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Executive Summary 

Autonomous vehicle (AV) and connected vehicle (CV) technologies have been much of the focus of 

transportation industry lately. In this project, we have focused on the lane changing problem of 

autonomous vehicles. Inappropriate lane changes due to the inefficiency of human drivers in prediction 

and estimation of the surrounding environment often lead to accidents. In this project, we have developed 

methodologies for efficient lane changing of autonomous vehicles (AV) in mixed traffic conditions. The 

proposed methodology is focused on improving the safety and comfort of the passengers traveling in an 

AV. 

Firstly, we have introduced an optimal data-driven control algorithm to solve the lane changing problem 

of AVs. We arrive at overcoming the limitations of existing model-based approaches for lane changing. 

The developed data-driven algorithms can achieve both theoretically provable convergence guarantees 

and learning-based adaptive responsiveness to environments. In the proposed methodology we make use 

of the online information of the state and input to solve the algebraic Riccati equation iteratively by using 

approximate/adaptive dynamic programming (ADP). A linear system model is used to describe the 

dynamics of the AV. 

Secondly, we have developed a lane change decision making algorithm to ensure safe and efficient lane 

change. Safety is assured during lane changing by maintaining a safe distance from the surrounding 

vehicles. The safe distance from each surrounding vehicle is chosen as a function of their respective 

velocities. Thus, ensuring more safety for fast moving vehicles. The purposed lane change decision making 

algorithm can make the AV abort any initiated lane change maneuver at any time if safety conditions are 

not met. In such scenarios, the proposed decision-making algorithm makes the AV maneuver back to the 

original lane. 

Thirdly, the linear vehicle model assumes constant longitudinal velocity of the vehicle which is not a 

practical consideration. Thus, we have considered that the AV can accelerate/decelerate during lane 

change. To incorporate this, we have proposed a novel data-driven gain-scheduling controller design that 

learns the controller gains at specified velocity points such that each of the learned controller gain is 

optimal. 

Finally, the optimal data-driven control algorithm and the lane change decision making algorithm have 

been validated by means of SUMO and MATLAB based computer simulations. 
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Background and Contribution 

Inappropriate lane changes are responsible for one tenth of all accidents [1], due to human drivers’ 

inaccurate estimation and predication of the surrounding traffic, illegal maneuver, and inefficient driving 

skill. Automated lane changing is regarded as a solution to reduce these human errors. At present, there 

are many obstacles to develop automated lane changing technology, including interactions between 

vehicles, complex routing choice, and interactions between vehicles and the environment. In this work, 

in order to improve safety and comfort, we aim to develop innovative model-free control methods for 

lane changing of autonomous vehicles (AVs) in mixed traffic consisting of both autonomous vehicle (AV) 

and human-driven vehicles (HDVs) based on reinforcement learning and optimal control techniques. The 

key components of lane changing are: 1) V2V communication, 2) sensing, 3) lane-change decision 

making and path planning, and 4) vehicle control algorithms [2].  

Over the past few years, many path planning and lane changing methodologies are proposed in the 

literature. The main aim of these methodologies is to first generate smooth trajectories using safety 

constraints. The safety constraints which are a part of the lane-change decision making module, are 

obtained by using the state (position, velocity, acceleration) information of the surrounding vehicles 

through V2V communication and sensing. Once the safe trajectories are generated, a controller is 

applied to track the generated trajectories. The authors in [3] proposed a utility function-based lane 

change and merge technique. The utility function considers the discretionary, anticipatory, and 

mandatory conditions to judge the desirability of the AV to change lane. Once lane change is deemed 

desirable, a safe longitudinal and lateral safety corridor is determined to perform the maneuver by 

selecting an appropriate inter-vehicle traffic gap and time instance. Most of the existing studies on lane 

changing have assumed that a vehicle in the target lane must decelerate to make space for the CAV due 

to safety considerations. This might cause traffic disruptions and increase the traffic crash rates. To deal 

with such an issue, [4] proposes a real-time dynamic cooperative lane-changing model for CAVs with 

possible accelerations of a preceding vehicle. The lane change decision is based on upper and lower 

bounds of acceleration and deceleration of the preceding and following vehicles in the target lane 

respectively. The lane change path is then generated using a cubic polynomial. In [6] an optimization-

based lane change methodology is proposed. The objective function is minimized for the longitudinal 

and lateral jerks, and total distance of lane change. Thus, the objective function is formulated keeping in 

mind the passenger comfort and traffic efficiency. The safety conditions are considered as constraints of 

the optimization problem. It is usually assumed that the vehicles neighboring AV are also AVs. This 

assumption does simplify the lane change methodology to an extent, but are ideal and quite ahead of 

the time we live in. A more practical scenario is considered in [5] where both human-driven vehicles and 

CAVs interact for lane change maneuvers. In [7] a dynamic lane-changing model for Autonomous Vehicle 

(AV) incorporating human driver behavior in mixed traffic is considered. The authors have implemented 
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a model-predictive-control- (MPC-) based joint trajectory control. Field experiments are conducted on a 

large-scale test track to test and validate the proposed model. Different human driver behaviors were 

considered in the experimental settings. After comparing with the measured human lane-changing 

maneuvers, it was found that the AV lane-changing maneuvers from the proposed model are more 

comfortable and safer. 

Once the lane change decision making is done, the next task is to place the AV to the desired 

position/gap in the desired lane. Many control techniques have been proposed in the past to maneuver 

the AV to the desired lane while ensuring safety [3]-[13]. In [3], the quadratic programming (QP) has 

been used to compute the control signals for lateral and longitudinal maneuver, where a double 

integrator model is used for the AV dynamics.  In [4], a linearized vehicle kinematic model with inertia 

delay τ is used to obtain the safety conditions for lane changing. The lateral trajectory of the AV is 

obtained using a cubic polynomial, where the linearized vehicle kinematic model was used to obtain the 

coefficients of the polynomial.  In [5] and [7], a model predictive control (MPC) based method is used for 

the vehicle control which uses the two-wheel kinematic vehicle model, where the two front (or rear) 

wheels are considered as one wheel. The authors in [6], propose a trajectory-tracking controller based 

on sliding mode control. The tracking controller is based on the backstepping approach. It can ensure 

global convergence during the lane-changing process. However, this trajectory-tracking model only 

considers current tracking errors. It may not handle a high-dynamic motion environment. In [8], a 

cooperative lane changing methodology is proposed where a decentralized cooperative lane-changing 

decision-making framework for CAV composed of state prediction, candidate decision generation, and 

coordination. The state prediction module employs cooperative car-following models to predict the 

vehicles’ future state. In [9], a hierarchical, two-level architecture is employed for the trajectory 

generation and vehicle control of AV. The high-level planner utilizes a simplified point-mass model and 

linear collision avoidance constraints, whereas, the low-level controller utilizes a nonlinear vehicle 

model in order to compute the vehicle control inputs required to execute the planned maneuvers. Both 

the high-level planner and low-level controller are formulated based on the model predictive control 

methodology. In [12], the authors formulate a stochastic MPC controller. The MPC controller can predict 

future states and implement constraints directly into the control algorithm. The proposed algorithm 

uses a linear parameter varying (LPV) vehicle model. 

As evident from the literature, most of the works done to solve the lane change problem in AVs use 

model-based techniques. The problem with these techniques lies in incorporating environment 

uncertainties in their methodology that can be introduced by the adversarial situations.  Many of the 

methodologies mentioned above requires solving an optimization problem in real time in order to 

generate/track safe trajectories for the AV lane change maneuver which requires high computation 

effort. Because of these observations, we believe that learning-based optimal control is more desirable 
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for practical implementation, which can continually handle the environment uncertainty introduced by 

the unknown environment-dependent parameters and simultaneously optimize the performance of the 

AV lane change maneuver by learning from the real-time data.  

This report adopts ideas from reinforcement learning [13, 14] and adaptive dynamic programming (ADP) 

[15] to develop an intelligent and safe lane change maneuver algorithm for AVs in the mixed traffic 

scenario. By systematic use of control theory, ADP has proven to be a powerful method to learn safe and 

stable controllers by using real-time data collected along the trajectories of the controlled system. One 

major advantage of ADP, as opposed to traditional reinforcement learning [13], lies in the fact that the 

closed-loop stability of the dynamical system is established when the learned control policy is 

implemented. Meanwhile, the stability/robustness of the CAV controller characterizes the convergence 

of the AV’s lateral position to a desired equilibrium. The main contributions of this report are 

summarized as follows. 

1) The proposed learning-based control algorithm for the AV is implemented in SUMO where the 

learning is done online during SUMO simulation. 

2) We proposed a lane change decision making algorithm to ensure safe and efficient lane change. 

Safety is assured during lane changing by maintaining a safe distance from the surrounding vehicles. The 

safe distance from each surrounding vehicle is chosen as a function of their respective velocities. Thus, 

ensuring more safety for fast moving vehicles.  

3) The purposed lane change decision making algorithm can make the AV abort any initiated lane 

change maneuver at any time if safety conditions are not met. In such scenarios, the proposed decision-

making algorithm lets the AV maneuver towards the original lane. 

4) We assume that we receive real-time data from a linear system. Thus, to make our methodology 

more applicable to practical scenarios, we have proposed a gain-scheduled learning-based controller to 

handle non-linearities. 
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Dynamic Model and Problem Formulation 

Longitudinal Dynamic Model 

The vehicle's longitudinal dynamic model is given as follows: 

�̇�𝑙𝑜 = 𝐴𝑙𝑜𝑥𝑙𝑜 + 𝐵𝑙𝑜𝑢𝑙𝑜, 

where  

       𝐴𝑙𝑜 = [
0 1
0 0

] , 𝐵𝑙𝑜 = [0,
1

𝑚
]
𝑇
, 𝑥𝑙𝑜 = [𝑥1, 𝑥2]𝑇 

with 𝑚 = mass of the vehicle, and 𝑢𝑙𝑜 is the force in the acceleration paddle, 𝑥1 = longitudinal position, 

and 𝑥2 = longitudinal velocity. 

Lateral Dynamic Model 

The lateral dynamic model is based on the position and orientation error variables as shown in Fig. 1. Let 

(𝑇𝑥 , 𝑇𝑦) be the coordinates of the target point, 𝜓  be the orientation of the vehicle, 𝑒1 be the error between 

the distance of the center of gravity of the vehicle and the center line of the target lane, and 𝑒2  be the 

orientation error of the vehicle with respect to the road. 

 

Fig. 1: Defining the errors 𝒆𝟏(𝒕) and 𝒆𝟐(𝒕)  

Assumption 1: Vehicles travel on a straight road with radius 𝑅 = ∞. 

The dynamic model is given as: 

�̇�𝑙𝑎 = 𝐴𝑙𝑎𝑥𝑙𝑎 + 𝐵𝑙𝑎𝑢𝑙𝑎 

(1) 

(2) 
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where 𝑢𝑙𝑎= the front wheel steering angle,  

𝑥𝑙𝑎 = [𝑒1(𝑡), 𝑒1̇(𝑡), 𝑒2(𝑡), 𝑒2̇(𝑡)]
𝑇, 𝐵𝑙𝑎 = [0,

2𝐶𝛼𝑓

𝑚
, 0,

2𝐶𝛼𝑓𝑙𝑓

𝐼𝑧
]
𝑇

, 

𝐴𝑙𝑎 =

[
 
 
 
 
 
0 1 0 0

0 −
2𝐶α𝑓+2𝐶α𝑟

𝑚𝑉𝑥

2𝐶α𝑓+2𝐶α𝑟

𝑚

−2𝐶α𝑓𝑙𝑓+2𝐶α𝑟𝑙𝑟

𝑚𝑉𝑥

0 0 0 1

0
−2𝐶α𝑓𝑙𝑓−2𝐶α𝑟𝑙𝑟

𝐼𝑧𝑉𝑥

2𝐶α𝑓𝑙𝑓−2𝐶α𝑟𝑙𝑟

𝐼𝑧

−2𝐶α𝑓𝑙𝑓
2+2𝐶α𝑟𝑙𝑟

2

𝐼𝑧𝑉𝑥 ]
 
 
 
 
 

. 

To keep the development of the model-free learning-based controller simple, in this report, we assume 

that the longitudinal and lateral dynamics are linear. It can be seen from the 𝐴𝑙𝑎that the longitudinal 

velocity 𝑉𝑥 appears non-linearly. Thus, Assumption 1 is a valid assumption for a linear lateral dynamical 

model for lane changing. From Fig. 1, the lateral position 𝑌(𝑡) and yaw angle 𝜓(𝑡) can be obtained as: 

𝑌(𝑡) = 𝑇𝑦 − 𝑒1(𝑡), 

𝜓(𝑡) = 𝜓𝑑𝑒𝑠 + 𝑒2(𝑡). 

 

Fig. 2: A typical lane change Scenario 

Lane Change Decision Making 

In Fig. 2, 𝐴𝑉 denotes the autonomous vehicle, 𝐿𝐶  denotes the lead vehicle in the current lane, 𝐹𝐶  denotes 

the following vehicle in the current lane, 𝐿𝑇 denotes the lead vehicle in the target lane, 𝐹𝑇 denotes the 

following vehicle in the target lane, 𝑆 denotes the safety distance.  

In this work, the lane change decision making is introduced for a single lane change maneuver. As shown 

in Fig. 2, four vehicles are involved in a lane change maneuver. The 𝐴𝑉 performs a maneuver to change 

the lane and places itself in the target point (𝑇𝑃). Let𝑥𝐴𝑉 , 𝑥𝐿𝑇
, 𝑥𝐹𝑇

, 𝑥𝐿𝐶
, 𝑥𝐹𝐶

 be the longitudinal positions 

of the vehicles involved in the lane changing process. Let 𝑣𝐴𝑉, and 𝑣𝐹𝑇
 be the velocities of the 𝐴𝑉 and  

𝐹𝑇 respectively. Then, the following conditions must hold true for a safe lane change: 

 

(3) 

(4) 
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𝑥AV ≤ 𝑥𝐿𝐶 − 𝑆𝐿𝐶(𝑡) 

𝑥AV ≥ 𝑥𝐹𝐶 + 𝑆𝐹𝐶(𝑡) 

𝑥AV ≤ 𝑥𝐿𝑇 − 𝑆𝐿𝑇(𝑡) 

𝑥AV ≥ 𝑥𝐹𝑇 + 𝑆𝐹𝑇(𝑡) 

where the safe distance is 𝑆𝑖(𝑡) = 𝐿 + ℎ𝑣𝑖(𝑡) , 𝑖 ∈ {𝐿𝑇 , 𝐹𝑇 , 𝐿𝐶 , 𝐹𝐶}, ℎ=headway time, 𝐿=Length of 

vehicle.  

The safe distance 𝑆𝑖(𝑡) is evaluated continuously. If the above inequalities are violated at any time instant 

during the lane changing, the 𝐴𝑉 maneuvers back to the original lane. This maneuver is done based on 

the change of leader vehicle. Thus, when the safe conditions violate, the target point 𝑇𝑃 is chosen at a 

safe distance from the leader in the original lane. The complete lane change algorithm is presented in the 

flowchart below: 
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Fig. 3: Lane change decision algorithm. 

Problem Definition 

Given that the dynamics of the 𝐴𝑉 is assumed not perfectly known and 𝑇𝑃 in the target lane is defined, 

the following problem is addressed in this work: 

Problem: Design a lane changing algorithm for the 𝐴𝑉 that incorporates the following: 

(i) an optimal model-free controller for the 𝐴𝑉 's lateral maneuver such that 𝑒1 → 0 , 

𝑒2 → 0. 

(ii) an optimal model-free controller for the 𝐴𝑉's longitudinal maneuver. 
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(iii) a lane change decision making mechanism based on inequalities in (4). 

(iv) an optimal model-free controller for post lane change platooning. 

(v) learns and schedules optimal gains for change in longitudinal velocity. 

Learning Algorithms 

Model-based Learning 

Consider a continuous-time linear time-invariant system described as: 

�̇� = 𝐴𝑥 + 𝐵𝑢 

where, 𝑥 ∈ ℝ𝑛 is the system state, 𝑢 ∈ ℝ𝑚 is the control input, 𝐴 ∈ ℝ𝑛×𝑚, and 𝐵 ∈ ℝ𝑛×𝑚 are the 

unknown state and input matrices, respectively. It is assumed the all the states are available for 

feedback and the system (5) is stabilizable. We seek to design a linear optimal control law of the form: 

𝑢 = −𝐾𝑥, 

such that the following cost function is minimized: 

𝑚𝑖𝑛
𝑢

   𝐽 = ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)
∞

0

, 

where,  

𝑄 = 𝑄𝑇 ≥ 0, 𝑅 = 𝑅𝑇 > 0, and (𝐴, 𝑄1/2) is observable. 

If 𝐴, 𝐵 are completely known, the solution to the above-mentioned problem is well known and the 

optimal gain matrix  𝐾∗ ∈ ℝ𝑚×𝑛   can be found as follows: 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 

𝐾∗ = 𝑅−1𝐵𝑇𝑃  

where (8) is called the algebraic Riccati equation. Since the Riccati equation is non-liner in 𝑃, it is generally 

difficult to solve. In the literature, many efficient iterative approaches have been proposed to solve (8). 

One such approach is given in [17], which is reproduced for completeness: 

 

(5) 

(6) 

(7) 

(8) 

(9) 
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Theorem 1: If 𝐾0 is any stabilizing control gain, and 𝑃𝑘  is the symmetric positive definite solution of the 

Lyapunov equation:  

(𝐴 − 𝐵𝐾𝑘)𝑇𝑃𝑘 + 𝑃𝑘(𝐴 − 𝐵𝐾𝑘) + 𝑄 + 𝐾𝑘
𝑇𝑅𝐾𝑘 = 0, 

𝐾𝑘+1 = 𝑅−1𝐵𝑇𝑃𝑘, 

Then, the following conditions hold: 

• (𝐴 − 𝐵𝐾𝑘) is Hurwitz 

• 𝑃∗ ≤ 𝑃𝑘+1 ≤ 𝑃𝑘,      

• 𝑙𝑖𝑚
𝑘→∞

𝐾𝑘 = 𝐾∗, 𝑙𝑖𝑚
𝑘→∞

𝑃𝑘 = 𝑃∗   

Note that (10) is linear in 𝑃. Thus, one can iteratively solve (10) and update 𝐾𝑘 to numerically approximate 

the solution. But this assumes the complete knowledge of the system matrices 𝐴, 𝐵.   

Model-free Learning 

Here, we present an online model-free learning-based controller design strategy that does not assume 

any knowledge of the system matrices 𝐴, 𝐵. Consider the modified system equation as follows: 

�̇� = 𝐴𝑘𝑥 + 𝐵(𝐾𝑘𝑥 + 𝑢), 

where, 𝐴𝑘 = 𝐴 − 𝐵𝐾𝑘 . Then, using (10), (11), and (12), we have: 

 

(𝑡 + 𝛿𝑡)𝑇𝑃𝑘𝑥(𝑡 + 𝛿𝑡) − 𝑥(𝑡)𝑇𝑃𝑘𝑥(𝑡) 

= ∫ [𝑥𝑇(𝐴𝑘
𝑇𝑃𝑘 + 𝑃𝑘𝐴𝑘)𝑥 + 2(𝑢 + 𝐾𝑘𝑥)𝑇𝐵𝑇𝑃𝑘𝑥]𝑑𝜏

𝑡+𝛿𝑡

𝑡

 

= ∫ 𝑥𝑇𝑄𝑘𝑥
𝑡+𝛿𝑡

𝑡

𝑑𝜏 + 2∫ (𝑢 + 𝐾𝑘𝑥)𝑇𝑅𝐾𝑘+1𝑥
𝑡+𝛿𝑡

𝑡

𝑑𝜏 

where, 𝑄𝑘 = 𝑄 + 𝐾𝑘
𝑇𝑅𝐾𝑘. It must be noted that (13) is independent of the systems matrices 𝐴, 𝐵. 

 

 

 

(10) 

(11) 

(12) 

(13) 
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Define the following: 

𝑥𝑇𝑄𝑘𝑥 = (𝑥𝑇 ⊗ 𝑥𝑇)vec(𝑄𝑘) 

(𝑢 + 𝐾𝑘𝑥)𝑇𝑅𝐾𝑘+1𝑥 = [(𝑥𝑇 ⊗ 𝑥𝑇)(𝐼𝑛 ⊗ 𝐾𝑘𝑅) + (𝑥𝑇 ⊗ 𝑢𝑇)(𝐼𝑛 ⊗ 𝑅)]vec(𝐾𝑘+1) 

For any positive integer 𝑙, define: Δ𝑥𝑥 ∈ ℝ𝑙×𝑛2
, 𝐼𝑥𝑥 ∈ ℝ𝑙×𝑛2

, 𝐼𝑥𝑢 ∈ ℝ𝑙×𝑛𝑚 as follows for 0 ≤ 𝑡1 < 𝑡2 <

⋯ < 𝑡𝑙: 

Δ𝑥𝑥 = [𝑥𝑇 ⊗ 𝑥 ∣𝑡1

𝑡1+δ𝑡
, 𝑥𝑇 ⊗ 𝑥 ∣𝑡2

𝑡2+δ𝑡
,⋯ , 𝑥𝑇 ⊗ 𝑥 ∣𝑡𝑙

𝑡𝑙+δ𝑡
]
𝑇

 

𝐼𝑥𝑥 = [∫ 𝑥
𝑡1+δ𝑡

𝑡1

⊗ 𝑥𝑑τ,∫ 𝑥
𝑡2+δ𝑡

𝑡2

⊗ 𝑥𝑑τ,⋯ ,∫ 𝑥
𝑡𝑙+δ𝑡

𝑡𝑙

⊗ 𝑥𝑑τ]

𝑇

, 

𝐼𝑥𝑢 = [∫ 𝑥
𝑡1+δ𝑡

𝑡1

⊗ 𝑢𝑑τ,∫ 𝑥
𝑡2+δ𝑡

𝑡2

⊗ 𝑢𝑑τ,⋯ ,∫ 𝑥
𝑡𝑙+δ𝑡

𝑡𝑙

⊗ 𝑢𝑑τ]

𝑇

. 

Using (14)-(18), (13) can be written as:  

Γ𝑘 [
vec(𝑃𝑘)

vec(𝐾𝑘+1)
] = Ψ𝑘, 

where, 

Γ𝑘 = [Δ𝑥𝑥, −2𝐼𝑥𝑥(𝐼𝑛 ⊗ 𝐾𝑘
𝑇𝑅) − 2𝐼𝑥𝑢(𝐼𝑛 ⊗ 𝑅)], 

𝛹𝑘 = −𝐼𝑥𝑥vec(𝑄𝑘). 

Thus, given an initial stabilizing control input, the trajectories of the system can be recorded online in 

(16)-(18), which can then be recorded in the data matrices (20), (21). The learning-based control 

algorithm is presented in Fig. (4). 

Assumption 3: There exists a sufficiently large integer 𝑙 > 0, such that: 

rank([𝐼𝑥𝑥, 𝐼𝑥𝑢]) =
𝑛(𝑛 + 1)

2
+ 𝑚𝑛 

Theorem 2 [14,15]: Under the assumption (22), there is a unique pair of matrices 𝑃𝑘 , 𝐾𝐾+1, with 𝑃𝑘 = 𝑃𝑘
𝑇, 

∀𝑘 ∈ ℤ+, such that: 

Γ𝑘 [
vec(𝑃𝑘)

vec(𝐾𝑘+1)
] = Ψ𝑘 

Theorem 3 [14,15]: Given an initial stabilizing gain 𝐾0 if (22) holds, the sequence {𝑃𝑖}0
∞ and {𝐾𝑖}0

∞ obtained 

by solving (23) converge to the optimal values 𝑃∗ and 𝐾∗, respectively.  

(14) 

(15) 

(18) 

(17) 

(16) 

(19) 

(20) 

(21) 

(22) 

(23) 
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Fig. 4: Learning-based control algorithm. 

Gain Scheduling 

The design of controllers by the gain scheduling technique is as follows: linear time-invariant 

approximations of the system at a good number of operating points of the system are obtained; linear 

time-invariant controllers are designed for each linearized representation of the system at the selected 

operating points, so that the stability and certain performance objectives are achieved; these controllers 

are then linked together in order to obtain a single controller for the entire range of the system operation 

[18]. Consider the following linear parameter varying (LPV) system: 

�̇� = 𝐴(α)𝑥(𝑡) + 𝐵(α)𝑢(𝑡), 

α = α(𝑡) ∈ [α0, α𝑛] =: 𝐼 ⊂ 𝑅 

 

(24) 
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where, the system matrices  𝐴(α) ∈ ℝ𝑛×𝑛 , 𝐵(α) ∈ ℝ𝑛×𝑚, 𝐶(α) ∈ ℝ𝑞×𝑛 are functions of time varying 

parameter 𝛼 = 𝛼(𝑡) ∈ [𝛼0, 𝛼𝑛] =: 𝐼 ⊂ ℝ. 

Assumption 3: The system in (25) is controllable for all 𝛼 ∈ 𝐼. 

In gain scheduling technique, we try to design a feedback control law of the form: 

𝑢(𝑡) = −𝐾(α)𝑥(𝑡), 

where, 𝐾(α) ∈ ℝ𝑚×𝑛 is the state feedback gain matrix. To design the state feedback control law in (25), 

we first select finite number of fixed 𝛼 ∈ 𝐼. Next, for each fixed 𝛼 the state feedback gain matrix 𝐾(α) is 

computed so that the stability and certain design goals are achieved for the closed-loop system. Let 𝐾(αl) 

and 𝐾(αl+1), respectively, denote the gain matrices computed at two adjacent points αl, and αl+1. At 

each α ∈ [αl, αl+1], the gain 𝐾(α) in (25) is chosen to be the linear interpolation between 𝐾(αl) and 

𝐾(αl+1),  given as [18]: 

(α) = 𝐾(α𝑙) +
𝐾(α𝑙+1) − 𝐾(α𝑙)

α𝑙+1 − α𝑙

(α − α𝑙). 

Note that 𝛼(𝑡) = 𝑉𝑥(𝑡) = 𝑥2(𝑡), and  �̇�(𝑡) = �̇�𝑥(𝑡) =  ulo/m  which is the longitudinal acceleration. In 

this work, we obtain each 𝐾(αi) by means of the learning-based control technique discussed above. Thus, 

for all fixed 𝛼𝑖, we obtain an optimal controller by Theorems 2 and 3. Thus, stability is guaranteed for each 

of the fixed 𝛼𝑖's. To guarantee the stability of the overall system, we need that 𝑉𝑥(𝑡) is slowly varying [18]. 

Since �̇�𝑥(𝑡) =  ulo/m, we can design ulo such that 𝑉𝑥(𝑡) is slowly varying. Thus, to guarantee overall 

system stability, one needs to design a feedback law 𝐾𝑙𝑜 for the longitudinal motion such that that vehicle 

acceleration has a small magnitude. The algorithm of the learning-based gain scheduled controller is given 

in Fig. 5 and is explained next. 

The algorithm starts by initializing the initial stabilizing controllers 𝐾0
1, 𝐾0

2, ⋯ , 𝐾0
𝑛 for the finite velocity 

points Vx
1, Vx

2,⋯ , Vx
n where we wish to freeze our system and learn the optimal controller gains 

𝐾 
1, 𝐾 

2, ⋯ , 𝐾 
𝑛. Next, we collect the position data xAV, xLC , xLT , xFC , xFT  and feed it to the lane change 

decision module (see Fig. 3). The lane change decision module decides whether to do a lane change or 

remain in the desired lane based on the safety conditions explained above. In any situation, we collect the 

actual velocity data Vx
AV of the AV. The gain scheduling technique suggests that we need to freeze our 

system at all the velocity points Vx
1, Vx

2, ⋯ , Vx
n, but in a practical scenario this is not possible as when the 

AV is on the road it would be very challenging to maintain a constant Vx
AV. Thus, we define a tolerance 

value 𝜖1such that when Vx
AV is close to one of the Vx

i’s and |Vx
AV − Vx

i| ≤ 𝜖1 we assume Vx
AV = Vx

i  and 

start collecting data for learning 𝐾 
𝑖 for Vx

i  and store in the database. It must be noted that the longitudinal 

(25) 

(26) 
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velocity of the car might vary and the condition |Vx
AV − Vx

i| ≤ 𝜖1 might not be always satisfied when we 

start collecting data for Vx
i . In such scenario, we again start from the very beginning step of collecting the 

position data xAV, xLC , xLT , xFC , xFT  and repeat all the steps as explained above until we have collected 

enough data. Once we collect enough data, say 𝑚 samples for a particular velocity Vx
i, we pass the data 

to the learning module (see Fig. 4). The learning module then returns the learned controller gain 𝐾 
𝑖 and 

it is stored in the database. The flag learned Vx
i  is used to avoid repeated learning for the same Vx

i. Once, 

a gain 𝐾 
𝑖 is learned for a Vx

i, we change 𝐾0
1 with 𝐾 

𝑖 and use the new controller for the AV maneuvers. 

Once 𝐾 
𝑖 and 𝐾 

𝑖+1 for two given adjacent points are learned, we define the interval [Vx
i , Vx

i+1) and use the 

use the interpolated gain given in (26) to obtain the control signal whenever Vx
i  lies the interval [Vx

i , Vx
i+1). 
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Fig. 5: Learning-based gain scheduling algorithm. 
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Results and Discussions 

In this section, simulation results are conducted to show the efficacy of the data-driven controller and the 

lane change decision making algorithm. We have implemented the proposed gain-scheduled learning-

based controller and the lane change decision algorithm in SUMO to test the effectiveness of the proposed 

methodology. We have obtained all the simulation data from SUMO environment and plotted them using 

MATLAB. This section explains the SUMO simulation data via different plots. We use the following weight 

matrices for the lateral control: 

𝑄 = diag([1, 2, 2000, 3000]), 𝑅 = 1. 

For the purpose of learning with an initial control gain 𝐾0, we apply the control input 𝑢 = 𝐾0𝑥 + 𝑒, where 

𝑒 is noise which is obtained using the summations of sinusoidal signals with randomly distributed 

frequencies. Note that the noise 𝑒 is deterministic [14-15]. The choice of the 𝑄 and R matrices is done 

considering the passenger and driver comfort and low fuel use. The last two diagonal entries in 𝑄, i.e., 

2000  and 3000 will penalize any large error in the yaw angle (𝑒2(𝑡), �̇�2(𝑡)) of the AV this will ensure 

passenger and driver comfort. The first two diagonal entries in 𝑄, i.e., 1, and 2 will penalize the error in 

lateral position (𝑒2(𝑡), �̇�2(𝑡)) of AV. If the first two diagonal entries are increased, then the error in lateral 

position of AV will need to be penalized more but this will require a more aggressive controller which 

might increase fuel consumption. We have chosen 𝑅 = 1 using trial and error. We have found that with 

𝑅 = 1, the control input to the AV, i.e., the steering angle of the AV, can be computed such that the driver 

comfort is assured. 

As explained above, we use the proposed technique of gain scheduling learning-based controller to learn 

the controller gains. It was observed that the AV longitudinal velocity varies roughly between 20m/s to 

22m/s. Thus, we choose the velocity intervals for gain scheduling as [20m/s, 21m/s), and 

[21m/s, 22m/s]. Thus, we need to learn optimal controllers for three velocities, i.e., Vx
1 = 20m/s, Vx

2 =

21m/s, and Vx
3 = 22m/s. We use the algorithm presented in Fig. 5 to perform gain scheduling-based 

learning. We use the following initial stabilizing control gains: 

𝐾0
1 = [0.535, 0.023, 88.546, 92.4412] 

𝐾0
2 = [0.535, 0.0258, 89.214 , 92.445] 

𝐾0
3 = [0.535, 0.028, 89.883 , 92.448] 

The tolerance 𝜖1is set as 0.2. To demonstrate the learning process and application of the learned gains we 

perform the lane changing two times. The Fig. 6 shows the velocity profiles of the AV  
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Fig. 6: Velocities of the vehicles. 

 

Fig. 7: The convergence of the of the optimal gains  
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and the surrounding vehicles that are obtained from the SUMO environment, where ΔLC
1  and ΔLC

2  are the 

lane pre-learning and post-learning lane changing times. The light blue strips in Fig. 6 indicate the intervals 

where |Vx
AV − Vx

i| ≤ 𝜖1 was satisfied for each Vx
i. Here, each of these intervals comprises of 300 data 

points. Thus, with a sampling rate of 0.01s, we collect data for 3s for learning. Observe that the data for  

Vx
1 was collected during the first lane change duration Δ𝐿𝐶

1 , the data for  Vx
2 was collected when the vehicle 

was already in the desired lane, and the data for  Vx
3 was collected when the vehicle was maneuvering to 

perform to second lane change. Thus, we collect data to cover different scenarios during lane changing. 

After the updated optimal controller gains were obtained for every Vx
i, the initial gains are replaced with 

the updated gains and the AV maneuver is performed using the updated gains and using the interpolation 

formula presented in (26). It is evident for Fig. 6 that ΔLC
2 ≈ 8𝑠 < ΔLC

1 ≈ 4𝑠. Thus, a significant 

improvement is seen in the lane changing time with the update optimal gain scheduled controller.  

Figure 7 shows the convergence of the optimal gains. The 𝜖 in Fig. 4 is set as 10−4. One can set the 

tolerance 𝜖 lower but this would increase the computation time that might affect the real time application 

of the learned controller. It is clearly seen from Fig. 7 that the gains converge to the optimal gains with 

just 5 iterations. Thus, it can be said that for the proposed algorithm, 300 samples or in other words 3s 

data is enough for the learning algorithm (Fig. 4) to converge. 

Figure 8 shows the safe distance of the AV with the surrounding vehicle. The safe distance is defined as 

𝑆𝑖(𝑡) = 𝐿 + ℎ𝑣𝑖(𝑡) , 𝑖 ∈ {𝐿𝑇, 𝐹𝑇, 𝐿𝐶, 𝐹𝐶}, ℎ= 0.5s is the headway time, 𝐿= 5m is the length of vehicle. It 

can be observed at 𝑡 = 0𝑠, the AV was not at a safe distance from FT, thus the AV does not start a lane 

change maneuver. At 𝑡 ≈ 5𝑠, the safety conditions for lane changing (4) satisfy for all the surrounding 

vehicles and the AV starts the first lane change maneuver that is completed in approximately 8𝑠. For the 

second lane change maneuver, the vehicles are already at safe distance, thus the AV can safely start the 

lane change maneuver. 

Figure 9 shows the states of the lateral system. It can be seen that the states converge to zero with the 

application of the controllers obtained using the proposed methodology. It was mentioned above that the 

gain scheduled controller can guarantee overall system stability if the feedback law 𝐾𝑙𝑜 for the 

longitudinal motion can be obtained such that that vehicle acceleration has a small magnitude. Here, we 

have obtained the 𝐾𝑙𝑜
∗ = [1, 52.63] with 𝑄𝑙𝑜 = diag([1, 1]), 𝑅𝑙𝑜 = 1 using historical data. The choice of 

𝑄𝑙𝑜 and 𝑅𝑙𝑜 must be such that the acceleration has a lower magnitude. Figure 10 shows the longitudinal 

acceleration profile of the AV. It can be seen that the acceleration magnitude is low.  

Remark: If 𝐾𝑙𝑜
∗  is very conservative such that the AV response in tracking the x-coordinate of the target 

point (𝑇𝑥) is sluggish, one can change 𝐾𝑙𝑜
∗  to a more aggressive gain for target tracking. But this must only 

be done when the error states of the lateral motion are negligible. In other words, when the AV has 
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already reached 𝑇𝑦, and there is no dependence on the lateral dynamics, one can switch to an aggressive 

𝐾𝑙𝑜
∗  for better tracking of 𝑇𝑥. 

 

Fig. 8: Safe distances of AV from surrounding vehicles. 
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Fig. 9: System states. 

 

Fig. 10: Acceleration of AV. 

 

 

Fig. 11: Lane abortion of AV. 

 

 

Fig. 12: Velocities during lane abortion. 
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Figure 11 shows the effectiveness of the lane change algorithm discussed in Fig. 3, and the velocities of 

the vehicles are shown in Fig. 12. The lane change starts at 3s. From Fig. 12, it can be seen that the FT 

starts accelerating more than the AV. At around 4s, FT comes close the AV and it starts aborting the lane 

change and maneuvers back to the current lane. Again, at 21s when the safety conditions satisfied, the 

AV starts maneuvering to the target lane. It must be noted that the graphs in Fig. 11 are normalized to 

bring them in the same scale for the sake of clarity in understanding the AV maneuver during lane abortion 

and lane changing. 

Conclusion and Contributions 

In this work, we have introduced an optimal data-driven control algorithm to solve the lane changing 

problem of AVs, where we make use of the online information of the state and input to solve the algebraic 

Riccati equation iteratively by using approximate/adaptive dynamic programming (ADP). In this work, we 

have assumed that the state and control input are received from a linear system. In order to make the 

proposed methodology applicable to non-linear and/or parameter varying systems, we have proposed a 

gain scheduling-based data driven control technique to learn optimal gains. Also, we have developed a 

lane change decision making algorithm to ensure safe and efficient lane change. Safety is assured during 

lane changing by maintaining a safe distance from the surrounding vehicles. The proposed lane changing 

algorithm can make the AV perform a lane abortion if safety conditions are violated during lane change. 

The optimal data-driven gain scheduled control algorithm and the lane change decision making algorithm 

has been validated by means of SUMO and MATLAB based computer simulations.  

As compared to existing methodologies in the literature, our proposed method is completely data driven. 

We do not use or assume any information of the system parameters. We only assume the knowledge of 

the state vector and the control input, and derive a model-free optimal controller with guaranteed 

stability. It must be noted that many methodologies in the literature of lane changing does not guarantee 

optimal control of their AV. Many of the techniques that are proposed in the literature requires to solve 

an optimization problem at every time step whereas our proposed methodology only requires to learn at 

specific time intervals with a smaller number of data points when the longitudinal velocity changes. Also, 

due to the fast convergence of the proposed methodology, it is suitable for real-time applications. 

Although, we assume that we receive data from a linear model, the gain scheduling-based data-driven 

controller design adds to the versatility of the methodology that makes the proposed methodology 

applicable to non-linear systems and/or parameter varying systems as well. Also, with the obtained 

optimal gain parameters, the lane changing time is seen to considerably improve. 
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